Small-amplitude perturbations in the three-dimensional cylindrical Richtmyer–Meshkov instability

نویسندگان

  • M. Lombardini
  • D. I. Pullin
چکیده

We first study the linear stability of an interface between two fluids following the passage of an imploding or exploding shock wave. Assuming incompressible flow between the refracted waves following shock impact, we derive an expression for the asymptotic growth rate for a three-dimensional combination of azimuthal and axial perturbations as a function of the Atwood ratio, the axial and azimuthal wave numbers, the initial radial position and perturbation amplitude of the interface, and the interface velocity gain due to the shock interaction. From the linearized theory, a unified expression for the impulsive asymptotic growth rate in plane, cylindrical, and spherical geometries is obtained which clearly delineates the effects of perturbation growth due to both geometry and baroclinic vorticity deposition. Several different limit cases are investigated, allowing recovery of Mikaelian’s purely azimuthal theory and Richtmyer’s plane model. We discuss the existence of three-dimensional perturbations with zero growth, typical of curvilinear geometries, as first observed by Mikaelian. The effect of shock proximity on the interface growth rate is studied in the case of a reflected shock. Analytical predictions of the effect of the incident shock strength and the perturbation wave numbers are then compared with results obtained from highly resolved numerical simulations of cylindrical imploding Richtmyer–Meshkov instability for ideal gases. A parallel is made with the instability growth in spherical and plane geometry. In particular, we propose a representation of the perturbation growth by considering the volume of the perturbed layer. This volume is found to grow faster in the plane case than in the imploding cylindrical geometry, among other results. © 2009 American Institute of Physics. doi:10.1063/1.3258668

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Richtmyer-Meshkov instability in elastic-plastic media.

An analytical model for the linear Richtmyer-Meshkov instability in solids under conditions of high-energy density is presented, in order to describe the evolution of small perturbations at the solid-vacuum interface. The model shows that plasticity determines the maximum perturbation amplitude and provides simple scaling laws for it as well as for the time when it is reached. After the maximum...

متن کامل

Numerical investigation of Richtmyer - Meshkov instability driven by cylindrical shocks ∗

In this paper, a numerical method with high order accuracy and high resolution was developed to simulate the Richtmyer-Meshkov(RM) instability driven by cylindrical shock waves. Compressible Euler equations in cylindrical coordinate were adopted for the cylindrical geometry and a third order accurate group control scheme was adopted to discretize the equations. Moreover, an adaptive grid techni...

متن کامل

Startup process in the Richtmyer–Meshkov instability

An analytical model for the initial growth period of the planar Richtmyer–Meshkov instability is presented for the case of a reflected shock, which corresponds in general to light-to-heavy interactions. The model captures the main features of the interfacial perturbation growth before the regime with linear growth in time is attained. The analysis provides a characteristic time scale for the st...

متن کامل

Hypervelocity Richtmyer–Meshkov instability

The Richtmyer–Meshkov instability is numerically investigated for strong shocks, i.e., for hypervelocity cases. To model the interaction of the flow with non-equilibrium chemical effects typical of high-enthalpy flows, the Lighthill–Freeman ideal dissociating gas model is employed. Richtmyer’s linear theory and the impulse model are extended to include equilibrium dissociation chemistry. Numeri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009